b-spline solution of boundary value problems of fractional order based on optimal control strategy

Authors

g.b. loghmani

abstract

in this paper, boundary value problems of fractional order are converted into an optimal control problems. then an approximate solution is constructed from translations and dilations of a b-spline function such that the exact boundary conditions are satisfied. the fractional differential operators are taken in the riemann-liouville and caputo sense. several example are given and the optimal errors are obtained for the sake of comparison. the obtained results are shown that the technique introduced here is accurate and easy to apply.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy

In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...

full text

B-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy

In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...

full text

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

full text

B-Spline Finite Element Method for Solving Linear System of Second-Order Boundary Value Problems

In this paper, we solve a linear system of second-order boundary value problems by using the quadratic B-spline nite el- ement method (FEM). The performance of the method is tested on one model problem. Comparisons are made with both the analyti- cal solution and some recent results.The obtained numerical results show that the method is ecient.

full text

Sextic spline solution of fifth-order boundary value problems

A numerical method based on septic B-spline function is presented for the solution of linear and nonlinear fifth-order boundary value problems. The method is fourth order convergent. We use the quesilinearization technique to reduce the nonlinear problems to linear problems and use B-spline collocation method, which leads to a seven nonzero bands linear system. Illustrative example is included ...

full text

B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

full text

My Resources

Save resource for easier access later


Journal title:
journal of sciences, islamic republic of iran

Publisher: university of tehran

ISSN 1016-1104

volume 23

issue 1 2012

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023